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Reproducibility in machine learning for health research: 
Still a ways to go
Matthew B. A. McDermott1*†, Shirly Wang2,3†, Nikki Marinsek4, Rajesh Ranganath5, 
Luca Foschini4, Marzyeh Ghassemi2,6,7

Machine learning for health must be reproducible to ensure reliable clinical use. We evaluated 511 scientific pa-
pers across several machine learning subfields and found that machine learning for health compared poorly to 
other areas regarding reproducibility metrics, such as dataset and code accessibility. We propose recommenda-
tions to address this problem.

INTRODUCTION
Reproducibility is required for scientific re-
search, but many subfields of science have 
recently experienced a reproducibility crisis, 
eroding trust in processes and results and 
potentially influencing the rising rates of 
scientific paper retractions (1, 2). Reproduc-
ibility is also critical for machine learning 
research (3); the goal of which is to develop 
algorithms to reliably solve complex tasks at 
scale, with limited or no human supervision. 
Failure of a machine learning system to con-
sistently replicate an intended behavior in a 
context different from that in which the be-
havior was defined may have unfortunate 
consequences. These risks are particularly high 
in artificial intelligence (AI) and machine 
learning applied to health (MLH), where 
algorithmic findings can directly affect hu-
man health care (4). As more AI health care 
tools are deployed in clinical practice, en-
suring that manufacturers report reproducible 
performance metrics is in the public interest. 
This challenge is further underscored by the 
lack of randomized control trials for deep 
learning–based systems in MLH and the 
high risk of bias that has been found in deep 
learning nonrandomized clinical trials (5).

Unfortunately, several factors related to the 
availability, quality, and consistency of clinical 
or biomedical data make reproducibility espe-
cially challenging in MLH applications. Here, 
we analyzed the state of reproducibility in MLH, 
contrasting this subfield of machine learning 
to both machine learning in general and to the 
subspecialties of computer vision and natural 

language processing. We developed a set of 
criteria for reproducibility tailored to MLH 
applications and designed to capture reproduc-
ibility goals more broadly. We then used these 
criteria to define several metrics quantifying the 
particular challenges in reproducibility faced 
within MLH. Next, we conducted a review of 
511 scientific papers to support our claims and 
to compare machine learning and AI in health 
care to machine learning more generally. Last, 
we build on this analysis by exploring promis-
ing areas for further research regarding repro-
ducibility in MLH.

REPRODUCIBILITY CRITERIA
The common understanding of reproduc-
ibility in machine learning can be summed 
up as follows: A machine learning study is 
reproducible if readers can fully replicate 
the exact results reported in the paper. We 
will call this concept technical reproducibil-
ity, as it is centrally concerned with whether 
or not one can exactly reproduce the precise, 
technical results of a paper under identical 
conditions. Although intuitive, we argue that 
technical reproducibility is actually only a small 
part of the goal of reproducibility more gen-
erally. This discrepancy has been noted histori-
cally in other domains in various ways (6, 7) 
and is made apparent by use of the term in the 
natural and social sciences where attempted 
reproductions will often occur in different 
laboratories using different equipment. How-
ever, to our knowledge, this discrepancy has 
not been explored in the context of MLH, and 

discussions of reproducibility in MLH, a sub-
field of machine learning where reproducibili-
ty is especially critical, have been limited to 
technical reproducibility. We argue that in 
order for a study to be fully reproducible, 
it must meet three reproducibility criteria: 
(i) technical reproducibility (can results be 
reproduced under technically identical 
conditions?), (ii) statistical reproducibility 
(can results be reproduced under statistical-
ly identical conditions?), and (iii) conceptual 
reproducibility or replicability (can results 
be reproduced under conceptually identical 
conditions?).

Technical reproducibility refers to the 
ability of a result to be fully technically repli-
cated, yielding the precise results reported in 
the paper. This entails aspects of reproducibili-
ty related to code and dataset release. Statis-
tical reproducibility refers to the ability of a 
result to be upheld under resampled condi-
tions that may yield mildly different numer-
ical results but should not statistically affect 
the claimed result. For example, if an algo-
rithm is trained on a dataset multiple times 
with different random initializations or with 
different random sub samples of the data used 
to train the algorithm versus evaluate the final 
model, then the reported results should be 
statistically equivalent even if they are not 
technically identical. Note that this is related 
to the notion of internal validity (8), which 
is commonly used in social science research. 
Last, conceptual reproducibility, or replica-
bility, describes how well the desired results 
can be reproduced under conditions that match 
the conceptual, high-level description of the 
purported effect. Just as statistical reproduc-
ibility is like internal validity, replicability is 
closely related to external validity (8), as it de-
scribes the notion of how well the desired re-
sults can be reproduced under conditions that 
match the conceptual description of the pur-
ported effect. Replicability is task-definition 
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dependent; claiming a task has a greater 
conceptual horizon of generalizability makes 
it harder to satisfy this requirement.

All three of these reproducibility criteria 
are central to full reproducibility. Without 
technical reproducibility, one’s result cannot 
be demonstrated. Without statistical repro-
ducibility, one’s result will not be repro-
duced under increased sampling and the 
presence of real-world variance. Without 
conceptual reproducibility or replicability, 
one’s result does not depend on the desired 
properties of the data but instead depends 
on potentially unobserved aspects of the 
data generation mechanism that, critically, may 
not be reproduced when deployed in practice. 
Under each of these lenses, MLH differs 
from general machine learning domains, 
such as natural language processing and 
computer vision, in critical ways and pre-
sents unique challenges.

CORE REPRODUCIBILITY 
CHALLENGES IN MLH
In this section, we illustrate both through 
qualitative arguments and a quantitative 
literature review that machine learning in 
health lags behind other subfields of ma-
chine learning on various reproducibility 
metrics. Our literature review procedure 
entailed manually extracting and annotat-
ing 511 papers presented at various ma-
chine learning conferences from 2017 to 
2019, spanning the fields of MLH, natural 
language processing, computer vision, and gen-
eral machine learning. Each paper was man-
ually annotated regarding reproducibility 
metrics including whether code and data 
were publicly available, the kinds of data-
sets used in the work, and whether variance 

of the results was reported. Results of this 
analysis are detailed in the sections below 
for technical, statistical, and conceptual re-
producibility (replicability); Fig. 1 shows 
the final quantitative results visually. (The 
full paper annotation and review procedure 
is detailed in the Supplementary Materials, 
and the full set of results is available at 
https://zenodo.org/record/4574378).

Technical reproducibility
MLH papers faced several key challenges 
regarding technical reproducibility. First, 
health data are privacy sensitive, making it 
difficult to release openly without either 
incurring risks of reidentification or diminish-
ing their usefulness by applying aggressive 
de-identification techniques. As a result, few 
public datasets are available, and those that 
are available are used very frequently, lead-
ing to a risk of dataset-specific overfitting. 
To this point, only ~55% of the MLH papers 
we examined used public datasets compared 
to more than 90% of both computer vision 
and natural language processing papers and 
~85% of general machine learning papers 
(our analysis of the different kinds of data-
sets used in MLH papers is shown in fig. S1).

MLH papers scored even more poorly 
when it came to code release, preprocessing 
specification, and cohort description, with 
only ~21% of the papers we analyzed releas-
ing their code publicly compared to ~39% 
of the papers in computer vision and ~48% 
of the papers in natural language processing. 
A previous study that reviewed the preva-
lence of code release in AI reported that only 
6% of papers released code (3), which is lower 
than all of our estimates. This discrepancy 
may be due to sampling papers from differ-
ent conferences and different time periods 

(2013–2016 versus 2017–2019 for the cur-
rent study). A previous study also examined 
the prevalence of code release and dataset 
cohort subselection in MLH papers, report-
ing that even when restricting focus to public 
datasets, papers often did not release code 
or included text that was insufficient to en-
able a full technical reproduction (9). Note 
that code release itself is not necessarily suf-
ficient for full technical reproducibility, be-
cause even when code is released, it may not 
run correctly, it may exclude critical details, 
or it may fail to generate the results reported 
in the paper.

Statistical reproducibility
To assess the state of statistical reproduc-
ibility in MLH papers, we quantified how 
often papers described the variance around 
their results (e.g., by listing both the mean 
and the SD of a performance metric over 
several random splits). Interestingly, where-
as the rate for this was relatively low (~44%) 
in MLH papers, it was higher than that for 
papers in computer vision, natural language 
processing, or general machine learning (~21, 
32, and 37%, respectively).

Although this is an encouraging sign, 
there is still room for improvement. Even in 
other fields of machine learning, with argu-
ably less complex data types, repeated studies 
have shown that published papers fail to be 
statistically reproduced when appropriate 
statistical procedures are implemented and 
fair hyperparameter search/preprocessing meth-
ods are used. For example, researchers have 
reported that published papers evaluated 
using the public ImageNet test set (a large 
public dataset and machine learning com-
petition for computer vision studies) show 
consistent drops in performance when trained 

0 0.25 0.5 0.75 1
HLMHLMHLM

157.05.052.00157.05.052.00

Evaluation metrics 
A Technical reproducibility

1 Code available 
2 Public dataset 

B Statistical reproducibility
1 Variance reported 

C Conceptual reproducibility 
(replicability) 

1 Multiple datasets 
N

at
ur

al
 la

ng
ua

ge
 p

ro
ce

ss
in

g
0

0.25

0.5

0.75

1

Co
m

pu
te

r v
is

io
n

G
en

er
al

 m
ac

hi
ne

 le
ar

ni
ng

B1
B1

B1

C1

C1

C1

A2
A2

A1
A1

A1

MLH
underperforms  

MLH
overperforms  

A2

Fig. 1. Reproducibility metrics for machine learning applications. Shown are reproducibility metrics (A, B, and C) for evaluating scientific papers from four machine 
learning subspecialties: machine learning in health (MLH), natural language processing, computer vision, and general machine learning. Presented is the fraction of pa-
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sets (C1). MLH consistently lags other subfields of machine learning on all measures of reproducibility apart from inclusion of proper statistical variance.
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and tested on other random splits within 
ImageNet (10). Issues with statistical repro-
ducibility may also arise due to an effect 
whereby researchers routinely spend more 
effort optimizing their method than is spent 
on the baseline methods against which their 
method is compared (11). It is likely that 
these problems with statistical reproducibil-
ity also plague MLH papers as well, especially 
given that health datasets tend to be relatively 
small, have high dimensionality, are noisy, and 
often suffer from sparse/irregular sampling.

Conceptual reproducibility (replicability)
The critical issue that prevents replicability of 
results in MLH papers is the lack of multi- 
institution datasets in health care and the 
limited usage of those that do exist. Whereas 
~80% of computer vision studies and ~58% 
of natural language processing studies used 
multiple datasets to establish their results, 
only ~23% of MLH papers did this. Using only 
a single health care dataset is not advisable, as 
it is known that developing machine learning 
models that attempt to generalize over chang-
ing health care practices or health data formats 
is challenging. Researchers have established 
that without using manually engineered rep-
resentations, machine learning models in 

health exhibit degradation in 
performance over time as health 
care patterns evolve (12). These 
results are expected given that 
health data are rife with hidden 
confounders, differ markedly 
between data collection and de-
ployment environments, drift 
over time, and further differ in 
structure and concept between 
different health care institu-
tions (13).

OPPORTUNITIES 
FOR IMPROVEMENT
Here, we present practical sug-
gestions for enhancing repro-
ducibility of results in MLH 
papers taking into account the 
MLH research community, health 
data providers, and associated 
journals and conferences (Fig. 2).

Create shared 
research resources
Health data providers such as 
hospitals, clinical research cen-
ters, and government agencies 
produce vast amounts of valu-

able health data. Unfortunately, as suggested 
by our literature review, few health datasets 
are available for researchers to explore. This 
is understandable, given the difficulty of 
ensuring safe, appropriate release of clinical 
data, the perceived high value of proprietary 
health data, and the difficulty in designing 
datasets across noninteroperable health plat-
forms. However, more shared resources would 
be extremely helpful in enabling reproducible 
research in the MLH field. We propose more 
instances of large data trusts where medical 
institutions can anonymously pool health 
data for researchers to use and from which 
algorithms can be created. Several prominent 
examples of such resources already exist, 
demonstrating that these challenges are 
possible to navigate. Such examples include 
Medical Information Mart for Intensive Care 
(MIMIC; https://mimic.physionet.org/) (14), 
the national biobanks of the United Kingdom 
and Japan (15, 16), and the eICU Collaborative 
Research Database (eICU; https://eicu-crd.
mit.edu/) (17).

Integrate multi-institute datasets
Multi-institute datasets (i.e., datasets contain-
ing health data from multiple care centers 
or underlying populations) enable studies to 

assess the ability of algorithms to be trans-
lated to new contexts, a critically understudied 
facet of MLH research. Recent strides have 
been taken in this regard with the release of 
the eICU dataset (17), one of MLH’s first 
large-scale, multi-institution electronic health 
record datasets; researchers are already ana-
lyzing how to generate generalizable models 
using this resource (18). In addition, Obser-
vational Health Data Sciences and Informatics 
(OHDSI; https://ohdsi.org/) (19) provides 
publicly available code and guidance on best 
practices to run observational health studies 
across multiple institutions and countries. 
Using OHDSI models, researchers have been 
able to leverage observational health data 
spanning many health institutions and realize 
major research goals. Ultimately, however, 
these efforts only go so far, and we encour-
age more collaborative efforts from health 
data providers in this arena to improve re-
producibility.

Prospectively collect or directly 
consent data
Health data collected as a by-product of 
health care and then later released for re-
search purposes, as is the case for the MIMIC 
database (14), can present serious privacy 
risks and contain many confounding vari-
ables. The landscape of these privacy risks 
and the nature of the confounding variables 
change (but do not necessarily lessen) if health 
data are instead prospectively collected di-
rectly from newly consented participants. 
These types of health data collection regimens 
are logistically challenging but are possible, as 
exemplified by the All of Us Research Program 
(20) of the National Institutes of Health, 
Evidation’s DiSCover Project (21), and Google’s 
Project Baseline (22). In addition, the use of 
directly consented health data, where pa-
tients are able to download their data and 
make it directly available to research pro-
grams, should be considered. This can be 
enabled by systems such as the Centers for 
Medicare and Medicaid Services Blue Button 
(23), which allows patients to directly down-
load their health care insurance claims data 
in readable formats with minimal hassle.

Adopt rigorous statistical methods
MLH researchers should be more rigorous in 
the development, refinement, and dissemi-
nation of statistical best practices, e.g., using 
the proper procedures for model compari-
sons. Upholding high standards of statistical 
rigor, potentially including periodic statisti-
cal audits of statistical reproducibility, will 
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help to ensure mitigation of the problems other 
fields have found with overfitting of data.

Develop new privacy-preserving 
analysis techniques
Technological solutions will also be helpful 
for mitigating privacy concerns by enabling 
MLH researchers to explore noisy, fully, or 
partially simulated or encrypted datasets. In 
cases where health data cannot be released, 
techniques to train distributed models with-
out sharing data have been proposed (24). 
Synthetic data (i.e., data that are not real but 
are programmatically generated to resemble 
real health data) can be an excellent tool to 
help enable researchers to meaningfully release 
their code with full end-to-end realization of 
their pipeline. Technology for producing syn-
thetic patient-level data already exists (25).

Preregistration alternatives
In the biomedical sciences, observational 
studies undergo intense scrutiny to ensure 
that they are not susceptible to statistical 
artifacts. Increasingly, these studies are re-
quired to be preregistered, meaning they 
must report their goal and planned analyses 
before any experiments are performed to 
avoid intentional or unintentional statistical 
errors, a move that has both proponents and 
detractors among scientists and publishers 
(26, 27). Despite the fact that almost all MLH 
studies are also observational studies, such 
prospective checks have so far been absent 
in MLH research. A verbatim application 
of the preregistration practices used by the 
epidemiology community is unlikely to be 
practical due to the intrinsic exploratory 
nature of machine learning model develop-
ment and the fact that datasets used in MLH 
research are commonly multipurpose. How-
ever, other techniques, such as systematic 
rerelease of new data or rotation of official 
training/test dataset splits, have been found 
to help reduce the presence of statistical er-
rors in other fields. MLH researchers and 
academic publishers should engage in 
serious conversations regarding the best ve-
hicle for checks and balances for algorithm 
development.

Establish reporting and code release 
requirements
Conferences and journals should require data 
and runnable code release (perhaps through 
synthetic or sample data, and the use of soft-
ware containers for easy management) or the 
provision of statements about additional data 
and code availability before publication. This 

would put pressure on the field to address 
some of the foundational barriers to data re-
producibility. Journals have the additional 
ability to insist on high standards for the re-
porting of statistical variance around results, 
hyperparameter search procedures, and eval-
uation mechanisms, each of which would 
help to ensure that we maintain high stan-
dards of technical and statistical reproducibil-
ity. Although code release may be difficult 
especially in cases of intellectual property re-
strictions, navigating these issues, which may 
require a cleaner separation between research 
and commercial applications, is essential for 
improving reproducibility in this field. An-
other important issue regarding code release 
is the choice of the license used for released 
software. However, any license that enables 
reproduction of the stated results (which 
most standard licenses do) is sufficient for 
reproducibility, although other important 
principles may motivate specific licensing 
choices (e.g., the use of an open source initia-
tive approved license).

Develop data and reporting standards
Collaborative efforts in developing data stan-
dards and reporting standards are another 
avenue for improving reproducibility. Health 
care analytics organizations have developed 
data standards such as the Observational 
Medical Outcomes Partnership standard (28) 
(https://chime.ucsf.edu/observational- 
medical-outcomes-partnership-omop) and 
the Fast Healthcare Interoperability Resources 
standard (29) (https://hl7.org/fhir/overview.
html), but they are not commonly adopted 
in MLH research. Increased use of data and 
reporting standards would make it easier to 
technically and conceptually replicate MLH 
studies. Similarly, when datasets are created 
with the intent to be used in MLH research, 
better descriptions of their contents, potential 
confounders and biases, missing data prev-
alence and distribution, and how they were 
created should be provided. Increasing the use 
of “specs” or “datasheets” describing data-
sets would help to allay these concerns and 
ensure that datasets are statistically adequate 
for the kinds of analyses that MLH research-
ers pursue. Efforts in the broader machine 
learning community are already achieving this 
goal (30), and these practices should be adopted 
by the MLH research community.

CONCLUSION
We have framed the question of reproducibil-
ity in MLH research around three foundational 

principles: technical reproducibility, statis-
tical reproducibility, and conceptual repro-
ducibility (replicability). In each of these 
areas, we argue both qualitatively and quan-
titatively, through a manual review of the 
literature, that MLH papers perform worse 
than do those in other machine learning 
subfields on several reproducibility metrics. 
There are intrinsic challenges of data acqui-
sition and use that are inherent to health 
datasets, but opportunities exist to improve 
access to health data, expand statistical 
rigor, and increase the use of multisource 
data to better enable reproducibility in MLH 
research.

SUPPLEMENTARY MATERIALS
stm.sciencemag.org/cgi/content/full/13/586/eabb1655/DC1
Procedures
Table S1. Sources and coverage statistics for our manual 
literature review.
Fig. S1. A breakdown of datasets used in the MLH papers we 
analyzed.
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